LP.STABILITE (1£p £o0) DE SYSTEMES ASSERVIS NdN
LINEAIRES MULTIVARIABLES NON INVARIANTS
QUI SONT INSTABLES EN BOUCLE CUVERTE

F.M, CALLIER - Ch, A, DESOER

RESUME :

Cette communication envisage une clagse de systémes multi-
variables non linéaires, variables avec le temps, avec comme boucle de
prédiction un sous systéme de convolution instable, et comme boutle de
retour un gain non linéaire variable avec le temps, La réponse impulsion-
nelle du sous systéme de convolution est la somme de :

i) un nombre fini d'exponentielles ‘croissantes multiplides par des
puissances non négatives du temps,
ii) un terme absolument intégrale

iii) une série infinie d'impulsions retardées,
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Abstract _ Hj
This paper considers a ¢lass of multivariable, nonlinear time-varying
feedback systems with an unstable convolution subsystem as feediorward
and a time-varying nonlinear gain as feedback. The impulse response of the
convolution subsystem 1s the sum of 1) a finite number of 1néreasing expo-
nentials multiplied by nonnegative powers of the time t, 1i) & term that
is sbsolutely integrable and i11) a infinite series of delayed Impulses.
The main result of the paper is theorem 1. It essentially states that i}
1if the unstable convolution gubsystem can be stabilized by a constant
feedbaeck gain F and ii) if the incremental gain of the difference between
the nonlinear gain function and F is sufficlently small, then the nonlinear

syaten is LP-stable for any p € [1,«]; furthermore the solutions of tha

nonlinear system depend continuously on the inputs in any megm. The

fixed point theorem 1s crucial in deriving the above theoren.

Le résultat essentiel de cette communication ast le théoradme 5‘\_‘\(;\
Ce théoréme montre essentiellement que gi : L/O.; ‘“
i} le sous systéme ce convolution instable peut etire stabiligé par urigi, Q
gain de retour constant F 1‘3.’ NASA_CE‘_‘]:;?C;Q’]} Lp—St;ABILI'lY (1 LESS nN74-18229
ii} 1e gain incrémental de la différence entre la fonction de gain non d;._g, THAN CR EQUAL ©0 p LESS THAN OX EQH AL
linéaire et F est suffiSamment faible, & 70 INFINITY) OF GBULTIVARIABLE MONIIMNEAR
alors le systéme non linéaire est Lp-stable, pour tout p £ [1, =4 J ; de TIHE-VARYING FEER DBACK SYSTEMS TH AT ARE G3/1 9 ggg:}igs

plus les solutions du systdme non linéaire dépendent continuement des
entrées pour toute norme LP. Le théorame du point fize est fondamental

pour élaborer le théoréme 1,
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1. Introcduction. In the past few years the Lz-stability {1}, [2] the

L - stability [3], [4] of certain classes of nonlinear and rime-varying
feedback systems have been extensively studied. Desoer and Wu [5], [6]
obtained Lp-stability conditions for a broad class of linear time-invariant
feedback systems whose open-loop impulse responses may include an integra-
tion and an infinite series of delayed impulses. They alsc obtained LP
stabilicy conditions for a related class of nonlinear time-varying systems
in [7]. Recently Callier and Descer [8], [9], [10] derived mnecessary and
sufficient conditions for stability of a very bread class of livear time-
invariant feedback systems whose open-loop impulse responses may Lnclude
increasing exponentials wultiplied by nonnegative poweram of time and an
infinite series of deiayed impulses. These conditions imply Lp—stability
for any p € [1,=], [6]. In thia paper the }onp transformation technique

[12], the fixed point theorem [16], and a generalized version of some te-

sults of Callier, Desoer and Wu [10], [7] are used to derive the LP-stability

for a related cl;ss of nonlinear time-varying feedback systems which are
open=loop unstable. The application of the fixed point theorem in LF shows
that the nonlinear feedback system has one and only one solution for any
pair of iaputs in LP, that the solutioms are continuously dependent on the
inpurs and that closed loop system is LP-gtable for any p € [1,»].

2. Kotations. In this paper we shall encounter real numbers (elementa of
R}, vectors (in F?n), matrices (in F%“’“), elements in function spaces and
operators acting on elements of function spaces. Lower-case letters denote
numbers of vectors, upper—case letters denote matrices. Bold-face lettera
{indicated by a tilde under :ﬁe gymbol) denote operators. The symﬁol [-]
denotes both the magnitude of a number and the norm of a vector in F?n or a
macrix in i%nxn- In function spaces, we use the following norms: Let

x: F?+ + R™, then by definition

« ]Jp
lep é[f |x(t)}P dt] , lzpecm,
[}
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and, for p = =,

ix 8

xS ess sup [x(t)l.

t>0

The resulting normed spaces are denoted by L:, 1<p=<=o (If a =1 (scalar
case) we write LP.) When the symbols || and 1-1 are applied to a matrix
or a matrix-valued function or an operater acting on function spaces, they
denote the induced operator morms. MNote that in defirinpg the 1% NOTGS
above wé may use any vector norm in R™ because all norms in K" are equiv-

alent. Following Sandberg [11] and Zames [2], the space Lge, the extension

of L% space, 1s defined as follows:

T
1.1:le & {x(.)lj [x(e)|P dt <=, ¥I € [0,=), L<p <@}
[*}

and

Loe £ (x(-)|ess sup |x(t)| <=, VI € [0,2)}.
) t € [0,T]

_ Roughly speaking, if x € L:e, then x does not have a finite escape time.

In order to allow us to consider a larger class of linear subsystems whose
impulse responses may include an infinite serles of impulses, we Intro—

duce the Banach Algebra {lnxn (see [6]). Let A be a distribution whose

nxn

lsupport is in [0,2). We say that A is an element of (] if

Az) = Aa(t:) +E Ai 6(1;-:1)
. 1=0

nxn 1 L s
vhere Ah= [0,2) + K is in Lnxn, the sequence {ti}0 is in {0,=) with
o

1 a is a sequence of @atrices in Ffuxn

=0, t, >0 for 1> 1 and (A

To i
subject to :E; |Ai| < » and § 1is the Dirac “function.”™ The set of elements
i=

1o ™" constitute s non-commutative Banach alpebra with a unit, with the

usual definition for addition, the product defined by convolutiom, and the
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norm defined by

hﬂaéf [Aa(:)Edt+Z]Ail.
°

i=0

These facts are well-known ([6,15].
The symbol """ over a function, such as f, denotes the Laplace transform

of f: It is defined by

2(e) & f £(r) ¢ ®t4c.
)

For distributions, it 1s defiped according to L. Schwartz [13] or, by using
Stieltjes integrals, according to Widder [14]. The subseript T, as In fI’

denctes the truncation of the function £ at time T, namely

£(t) for 0 £t <T
£.(0) = { :
0 for t>7T

AR ‘ . . ’
Finally (0" denotes the algebra of Laplace transforms of elements in
anxn (with pointwise product).

3. Systen Description and Assumptions.

We consider a 2n~input Zn-output nonlinear time-varying feedback system
S as shown in Fig. 1. The inputs Uyr Uy errors e, €5, outputs ¥pe y2
are functions of time mapping R_‘_ into R™, The block labeled ¢ 15 a
zemoryiess, time-varying nonlinearity whose input-output relation 18 de-
fined in terms of a nonlinear function ¢: R™ x R, - R® vy

7,(t) = $le,(c),xl. (&¥)

The nonlinear function $(",*) satisfies the following assumptions:
(R.1)  #(*,*): R® « R+ +R™ and ¢ is a coatinuous function with respect

to its first argusent and is a regulated func:ion(ﬂ with respect to its
@ axn: R xR~ R" 1s called regulated in t 1ff for all fixed
z € R®, tw ¢(x,t) has finite one-gided limits at every t € R+.
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second argument.

{(N.2) There exists a nonsingular mactrix ¥ € ™" and a positive real aumber
¥ such that
[¢€x,t) - ¢x’,t) ~ Flx-x")| = v|z-x’| 2
for all t € R+ and all x, x' € ﬂn; moreover
#{0,t) = 0 for all t € R+. (3)
The block labeled ¢ is a linear time-invariant subsystem whose input-output

relation 1s defined ian terms of its impulse response matrix G by convolu—

tion, i.e.
yl(t) = (G*el) (t) for all ¢t € R+ {4

G is & matrix valued distribution om [0,=) whose Laplace transform € satisfies

the agsumption (G):

R ‘¢ B-1 -mk+a R
.G(s) = z Z R'm:: (s-pk) + Gp(s) for Re 3 > 0, (s)
k=1 a=0

where Re Py 20 fork=1, 2, ..., &; the poles L and the coefficient

matrices Rk.a are either real or occur in complex conjugate pairs;

’ ép(a) € A", fthe system equations are (1), (4) and

e, =u -7, {6)
ey = U, + Y- {(Nn

Definition: Let p € [1,»]; the system § (Fig. 1} defined by (1) - (7) is
P_

said to be L' -stable iff the maps (ul,uz) [od (el,ez) and (ul,uz) L (yl,yz)

are [F-stable {.e, to any input palr (“l’ul) belonging to Lgn correspaonds

an error pailr (el,ez) and an output pair (yl,yz) both belonging to Lgn and

there is a number k E'R*_ such that
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1 |
Selp+iezlp:k [llul!p+ uzﬂp} __ﬁg
By, + by, <& [ugi o+ Tud
P
for all (ul'u2) € LG.

4, Main Result.

Thepram 1. Consider the systemls described by (1), (4}, (6) and (7), where
the assumptions (G), (N.1) and (N.2) are satisfied. Let Hy be the closed-
loop impulse response of the a-input o-output coavolution feedback system
u H-yl with G as open-loap impulse response and F as comstant feedback

1
matrix, i.e.

ﬁp = &[r+EG) L. (8)

Ia (5) fork=1, 2, ..., & set

mk-l
. -m, o
A
R (s) € ), R (e=p,) " - (9
o=0
At each pole Py for k=1, 2, ..., & consider the Laurent expansion of

I + FG{s) up to amd including the comstant term. This proper rational

function can be represented as the product Nk(s) ]Jk(s)-'1 where Nk and Dk

are right-coprime polynomial matrices [18-21], i.e. for k =1, 2, ..., 1
§
N () D (o)} = I+ FIR (8) + 30 Ro(p) + & (p)] (10)
k k Bk PR
g=1
B#k

Uader these conditions, 1f

inf |det[I + FG(s)1| > © Qay
Re s > 0
det Nk(pk) y0 fork=1,2, ..., % (12}
VI-2-.7

and

IHFHau < i (13}
then,
1) for any p € [1,#], the maps (ul,uz)» (el,ez) and

s . P
(ul,u2)+ (yl,yz) are well-defined maps sending LG inta LG,

. (1) for any p € [1,»], these maps are uniformiy continuous on Lgn;

(111} for any p € [1,=}, the system 5 is tBstable,

5. Proof, To prove Theorem 1 we need two lemmas,

Lemma 1. Gonsider a special case of the system § (Fig. 1), where for all
ey € R® a1l ce R-#’ ¢(e2.t) = Fe,, with F a nonsingular element

of R™®, tet the open-loop transfer function matrix & be definad by

{5). Llet N, and I)k be the right-coprime polynomial matrices defined by

k
(10). TUnder these condicions

and

if and only if

inf Jder[r+¥&(s)1| > 0 (11}
Re s > 0
and
det Nk(pk) #0 forkmwl, 2, ..., k. (12)

This is a generalized version of a result of {10].
Lemma 2. Gonslder a more general system than the one shown in Fig. 1, in

that G and ¢ are replaced by Y, and U, respectivelv. Let p be fixed and

p € [1,7]. Let El and EZ be nonanticipative maps nf Lge into

P = =
Lne' Let gl be linear, chus 510 0. Let gzo 0. Let €, €y and u, U,

be defined by the system equations. Under these condirions Lf
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{a) for some F E F?nxn' F nonsingular, (}+§§1)-1 maps Lze into Lge and is
nosanticipative;

(b) there exists some positive real number u such that

- - - al
I(lezezj,r (.':_-l ) Ip < plez,r el

(eg~eg)y T p

for a1l T € [0,) and for all e,, e € :{e,

{c) '] (I+Fl-11) < mj

@ v = g () T < 1,
N [ P
then: (1) given any ioput pair (“1’“2) in L2 et 8 unique error e, in I.ne

is obtained by a fixed point iteratiom starting from an arbitrary point;

(i1} 4if uy and u, are the zero elements in Ige,then e, is the zero element

ta 1} ;
(111) to any two 1nput pairs, say (ul,uz), (ul,u') in L2ne there corres~

pond two arrors e, and ez in Lze such that

2
Toyy - egl < (1-1) M5t ) Ty, sl +

18 (1) VT € [0,%),

st
1t
Therefore the map (ul,uz) "oe, 1s a well-defined LP-stable map sending

14 iote P wvhich is uniformly continucus on Lp .
n 1] 20

This Lemma is a coasequence of the loop transformation technique [12]) and

the fixed point Theorem [1£].

Proof of Theorem 1. Let F be the nonsingular nxn constant matrix of as-

sumption {N.2). Make the system transformation such that the block in the

forward path becomes

By = (0 . )

Vi-2-9

and the block in the feedback path becomes
p=¢-FL. (15)

Let ﬁF(s) be the transfer function matrix of K, then

i (a) = E(s) (T+FE(s)) L. (16)

By assumptions {11) and (12} of Theorem 1, Lemma 1 implies that (I+Fﬁ(s))-1
and ﬁF(s) are in Clnxn: eince they are the transfer functions of the

operators (Z+§9)-1 and EF‘ these operators are nonanticipative, send Lz

into L: for any p € [L,%), and arve LP-stable for all p € [1,=], [6]. Thus

the impulse response matrix HF is iu(ﬁuq'and iz of the form

i (c) + z H é(t-e;)  forc >0
Hy(t) = 1=0
for t <0,

where H € L1 ,the R, "s are constant matrices such that TT‘ !H | <« @ and
a nxn e i
1={

-0, L, > 0 for 1 > 1. Also Hy has a well-defined norm in CZPxn

i

to

MU f [m ¢e)lde + Z g, |-

i=0

Note that IHFIa is the induced operater norm when p = = and is an upper

bound on the induced operator norm when p ¥ @, By assumption (N.2) we have
- [ - (] -
F(gey)p — (geg)p - E(eymepd b < wlheppmel )
for all T € [0,=), for all e,, ] € Lge.

Finally by assumption (13): IHFH e 1; furthermore G is linear so
§ 0 =0 and, by assumption (N.2), 4 0 = 0. So all the conditions of

Letma 2 are met for anv p € [1,=}with ﬂl = 3 and Ez = ¢. Hence, for any
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p € {1,=], it follows that for the system 5 the map (ul,uz) + e, is well
defined scnding Lgn into Li, 16 LP-stable and is uniformly continuous on

P i . = )
LG. Since ¥p ?ez, -

V(pedp = (gepiql, = TE(eppren il <

(geydy = (4opdg = Eleypmeidl, < v Tepp - eppd s

and ¢ 0 =0,
it follows for any p € [1,=], that the map e, Py, is a well-defined map
sending LE into Li whteh is LP~srable and uniformly continuous on Lﬂ.
Finally since g = Uy " ¥y and ¥y = ey " Uy the conclusion of the theorem
follows.
6. Final Remark. If, instead of assuming that ¢ satisfies sn incremental
gain conditicn as in (2) of assumption (N.2), we had assumed thar there

exists a positive real number j such that
|#¢x,t) - Fx] < nix| for all t € F2+, for all x € BT, zh

then we would be able to use the small gain theorem to prove the following:
P

suppose that for some p € [1,»] and for any input pair (“1'“2) € LG the
error palr (el,ez) € Lgne,then assumptions (¥.1l), (2"), (3), (G) anmd (11},

(12}, (13) imply that system S is LP-stable., This result is easily obtained
by standard techniques [1], [2], [li] and extends a rvecent result of Prada.
and Bickart {17].. Nate that under the relaxed assumption (2') we do not
guarantee existence, nor uniqueness, nor continuous dependence.

7. Coaclusion. We have shown that if the given nonlinear time-varying
feedback system S will be uniquely defined, stable and continuously depen-—
dent on fts inputs in any 1P norm if eventually i) the unstable convolution
subsystem can be stabilized by a constant feedback gain F and ii) 1f the
foncremental gain of the difference of the nonlinear gain functlion ¢ and F

18 gufficlently small.
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The system §.
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